CGS unit system uses centimeter/gram/seconds as its the base units. This page lists the most common constants of nature in cgs.

# typical CGS constants in python
c     = 2.99792e+10  # speed of light; cm/s
me    = 9.10939e-28  # electron mass; g
mp    = 1.67262e-24  # proton mass; g
e0    = 4.80325e-10  # electron charge; esu
h_pc  = 6.62606e-27  # Plank constant; erg*s
sigT  = 6.65246e-25  # Thomson cross section; cm^2
sigSB = 5.67040e-5   # S-B constant; erg/(s*cm^2*K^4)
kB    = 1.38065e-16  # Boltzmann constant; erg/K
BQ    = 4.41396e13   # Schwinger field strength; G
lamC  = 2.4240e-10   # Compton wavelength; cm
Msun  = 1.989e33     # solar mass; g
pc    = 3.086e18     # parsec; cm;


Physical constants

Quantity Symbol Value Units Full units
Boltzmann’s constant $$k_\mathrm{B}$$ $$1.3807 \times 10^{-16}$$ $$\mathrm{erg}\,\mathrm{K}^{-1}$$ $$\mathrm{cm}^2 \, \mathrm{g} \,\mathrm{s}^{-2} \, \mathrm{K}^{-1}$$
elementary (electron) charge $$e$$ $$ 4.8032 \times 10^{-10}$$ $$ \mathrm{esu}$$ $$ \mathrm{cm}^{3/2} \, \mathrm{g}^{1/2} \,\mathrm{s}^{-1}$$
gravitational constant $$G$$ $$6.6726 \times 10^{-8}$$ $$\mathrm{cm}^3\,\mathrm{g}^{-1}\,\mathrm{s}^{-2}$$
Planck’s constant $$h$$ $$6.6261 \times 10^{-27}$$ $$\mathrm{erg} \, \mathrm{s}$$ $$\mathrm{cm}^2 \, \mathrm{g} \,\mathrm{s}^{-1}$$
reduced Planck’s constant $$\hbar \equiv h/2\pi$$ $$1.0546 \times 10^{-27}$$ $$\mathrm{erg} \, \mathrm{s}$$ $$\mathrm{cm}^2 \, \mathrm{g} \,\mathrm{s}^{-1}$$
speed of light in vacuum $$c$$ $$2.9979 \times 10^{10}$$ $$\mathrm{cm}\,\mathrm{s}^{-1}$$
Stefan-Boltzmann constant $$\sigma_\mathrm{SB}$$ $$ 5.6704 \times 10^{-5}$$ $$\mathrm{g}^2 \, \mathrm{s}^{-3} \,\mathrm{K}^{-4}$$
electron mass $$m_e$$ $$ 9.1094 \times 10^{-28} $$ $$(511\,\mathrm{keV}/c^2)$$ $$ \mathrm{g}$$
proton mass $$m_p$$ $$ 1.6726 \times 10^{-24} $$ $$(938.272\,\mathrm{MeV}/c^2)$$ $$ \mathrm{g}$$
neutron mass $$m_n$$ $$ 1.6749 \times 10^{-24} $$ $$(939.563\,\mathrm{MeV}/c^2)$$ $$ \mathrm{g}$$
atomic mass unit $$u$$ $$ 1.6605 \times 10^{-24} $$ $$(931.494\,\mathrm{MeV}/c^2)$$ $$ \mathrm{g}$$
proton/electron mass ratio $$m_p/m_e$$ $$ 1836.2 $$
dynamic viscosity $$\mu$$ $$ \mathrm{g}\,\mathrm{cm}^{-1} \, \mathrm{s}^{-1}$$
kinematic viscosity $$\nu \equiv \frac{\mu}{\rho}$$ $$ \mathrm{cm}^{2} \, \mathrm{s}^{-1}$$
frequency of 1 eV $$\nu_0 = e/h$$ $$2.4180 \times 10^{14}$$ $$ Hz $$
energy of 1 eV $$h \nu_0$$ $$1.6022 \times 10^{-12}$$ $$ \mathrm{erg} $$
energy of 1 erg $$\mathrm{erg}$$ $$6.62315 \times 10^{11}$$ $$10^{-7}\,\mathrm{J}$$ $$ \mathrm{eV} $$
temperature of 1 eV $$11604 $$ $$ \mathrm{K} $$
Avogadro number $$N_A$$ $$6.0221 \times 10^{23} $$ $$ \mathrm{mol}^{-1} $$
gas constant $$R_A \equiv N_A k_{\mathrm{B}}$$ $$8.3145 \times 10^{7} $$ $$ \mathrm{erg}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1} $$

Common derived units include:

  • $\color{blue}{\mathrm{erg}} = \mathrm{g}\,\mathrm{cm}^2 \, \mathrm{s}^{-2}$ for energy (from $E = m c^2$).
  • $\color{blue}{\mathrm{dyne}} = \mathrm{g} \, \mathrm{cm} \, \mathrm{s}^{-2}$ for force,
  • $\color{blue}{\mathrm{Gauss}} = 10^{-4} \, \mathrm{Tesla}$ for magnetic field strength,
  • $\color{blue}{\mathrm{esu}}$ for charge.

QED constants

Derived constants (especially in the theory of quantum electrodynamics) are

Quantity Symbol Value Approx. Full units
fine structure constant $$\alpha \equiv \frac{e^2}{\hbar c}$$ $$7.2974 \times 10^{-3}$$ $$\approx \frac{1}{137}$$
classical electron radius $$r_0 \equiv \frac{e^2}{m_e c^2}$$ $$ 2.8179 \times 10^{-13}$$ $$ \mathrm{cm}$$
Thomson cross-section $$\sigma_\mathrm{T} \equiv \frac{8\pi}{3} r_0^2$$ $$ 6.6524 \times 10^{-25}$$ $$ \mathrm{cm}^2$$
electron Compton wavelength $$\lambda_\mathrm{C} \equiv \frac{h}{m_e c}$$ $$ 2.4263 \times 10^{-10}$$ $$ \mathrm{cm}$$
critical Schwinger field $$B_\mathrm{Q} \equiv \frac{m_e^2 c^3}{\hbar e}$$ $$ 4.4139 \times 10^{13}$$ $$ \mathrm{G}$$

Astronomical constants

Quantity Symbol Value Approx. Full units
Solar mass $$M_\odot$$ $$ 1.989 \times 10^{33} $$ $$ \mathrm{g}$$
Earth mass $$M_E$$ $$ 5.974 \times 10^{27} $$ $$\approx 3 \times 10^{-6} M_\odot$$ $$ \mathrm{g}$$
Jupiter mass $$M_J$$ $$ 1.899 \times 10^{30} $$ $$\approx 1 \times 10^{-3} M_\odot$$ $$ \mathrm{g}$$
Solar radius $$R_\odot$$ $$ 6.955 \times 10^{10} $$ $$ \mathrm{cm}$$
Earth radius $$R_E$$ $$ 6.378 \times 10^{8} $$ $$\approx 10^{-2} R_\odot$$ $$ \mathrm{cm}$$
Jupiter radius $$R_J$$ $$ 7.149 \times 10^{9} $$ $$\approx 10^{-1} R_\odot$$ $$ \mathrm{cm}$$
Solar luminosity $$L_\odot$$ $$ 3.839 \times 10^{33} $$ $$ \mathrm{erg}\,\mathrm{s}^{-1}$$
astronomical unit (radius of earth’s orbit) $$\mathrm{AU}$$ $$ 1.496 \times 10^{13} $$ $$ \mathrm{cm}$$
parsec $$\mathrm{pc}$$ $$ 3.086 \times 10^{18} $$ $$ \mathrm{cm}$$
light-year $$\mathrm{ly}$$ $$ 9.461 \times 10^{17} $$ $$ \mathrm{cm}$$
year $$\mathrm{yr}$$ $$ 3.156 \times 10^{7} $$ $$\approx \pi \times 10^7$$ $$ \mathrm{s}$$
gravitational radius $$r_g \equiv \frac{G M}{c^2}$$ $$ 1.4822 \left(\frac{M_\bullet}{M_\odot}\right) $$ $$\mathrm{km}$$
Schwarzschild radius $$r_\mathrm{S} \equiv \frac{2G M}{c^2}$$ $$ 2.95 \left(\frac{M_\bullet}{M_\odot}\right) $$ $$\mathrm{km}$$
Eddington luminosity $$L_\mathrm{Edd} \equiv \frac{4\pi G M c m_p}{\sigma_\mathrm{T}}$$ $$ 1.26 \times 10^{38} \left(\frac{M_\bullet}{M_\odot}\right) $$ $$ \mathrm{erg} \, \mathrm{s}^{-1}$$

Electrodynamics (CGS-gaussian)

Electrodynamics has multiple unit systems. Commonly used system is the gaussian system with Maxwell’s equations given as:

\[\nabla \times \mathbf{E} = - \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \quad\mathrm{Faradays~law}\] \[\nabla \times \mathbf{B} = \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{J} \quad \mathrm{Amperes~law}\] \[\nabla \cdot \mathbf{E} = 4\pi \rho \quad \mathrm{Poisson~equation}\] \[\nabla \cdot \mathbf{B} = 0 \quad \mathrm{no~monopoles}\]

In Gaussian, units the vacuum permeability $\mu \approx 1$ and the vacuum permittivity $\epsilon_0 \approx 1$.

Quantity Symbol Unit gaussian/SI conversion
Electric charge $$e$$ $$ \mathrm{esu}$$ $$3 \times 10^9 \,\frac{\mathrm{statcoul}}{\mathrm{C}}$$
Electric field $$\mathbf{E} $$ $$\mathrm{statvolt}\,\mathrm{cm}^{-1}$$ $$3.33 \times 10^{-5} \,\frac{\mathrm{statvolt}\,\mathrm{cm}^{-1}}{\mathrm{V}\,\mathrm{m}^{-1}}$$
Magnetic field $$\mathbf{B}$$ $$\mathrm{Gauss}$$ $$10^{4} \,\frac{\mathrm{G}}{\mathrm{T}}$$
Current $$\mathbf{J}$$ $$\mathrm{statamp} \equiv \mathrm{esu}\,\mathrm{s}^{-1}$$ $$3 \times 10^{9} \,\frac{\mathrm{statamp}}{\mathrm{A}}$$
Electric potential (voltage) $$V_\mathbf{E}$$ $$\mathrm{statvolt}$$ $$10^{2} \,\frac{\mathrm{statvolt}}{\mathrm{V}}$$

The factors of $3$ come from inclusion of $c \approx 3 \times 10^{10} \,\mathrm{cm}\,\mathrm{s}^{-1}$ and factors of $100$ from $\mathrm{m}/\mathrm{cm} = 100$.

Note on Gaussian unit system

Electromagnetism requires addition of a new unit dimension; this is charge. Charge times electric field has same units in SI and gaussian unit system, $q \mathbf{E} = M L T^{-2}$. However, magnetic field times the charge differs, as it is $q\mathbf{B} = M T^{-1}$ in SI and $q\mathbf{B} = M L T^{-1}$ in gaussian. In addition, in SI unit $B^2$, $E^2$, and $e^2$ require an additional quantity with dimensions, either $\epsilon_0$ or $1/\mu_0 = \epsilon_0/c^2$, to convert the value into quantities involving $M =$ mass, $L=$ length, and $T=$ time. No extra quantities are required in gaussian unit system.

Plasma physics

Electron gyrofrequency

\[\omega_B \equiv \frac{e B}{\gamma m_e c} = 1.76 \times 10^7 ~B\,\mathrm{rad}\,\mathrm{s}^{-1}\]

Electron plasma frequency

\[\omega_p \equiv \left(\frac{4\pi n_e e^2}{\gamma m_e}\right)^{1/2} = 5.64 \times 10^4 ~n_e^{1/2} \,\mathrm{rad}\,\mathrm{s}^{-1}\]

References

Useful references include:

Updated: